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Abstract— This paper presents a computationally efficient
algorithm for function approximation with piecewise linear
sigmoidal nodes. A one hidden layer network is constructed
one node at a time using the well-known method of fitting
the residual. The task of fitting an individual node is accom-
plished using a new algorithm that searches for the best fit
by solving a sequence of Quadratic Programming problems.
This approach offers significant advantages over derivative—
based search algorithms (e.g. backpropagation and its ex-
tensions). Unique characteristics of this algorithm include:
finite step convergence, a simple stopping criterion, solu-
tions that are independent of initial conditions, good scaling
properties and a robust numerical implementation. Empir-
ical results are included to illustrate these characteristics.
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I. INTRODUCTION

Multilayer perceptrons (MLPs) have become a popular
tool for approximating nonlinear functions in higher di-
mensions. Although they are not the panacea for these
types of problems, they are clearly recognized as a useful
member of the “toolbox of methods” that one might em-
ploy. Other methods include interaction splines [1], [2], [3],
additive models [4], projection pursuit [5], [6], MARS [7],
the II method [8], hinging hyperplanes [9] and CART [10].
None of these are likely to perform consistently better than
the others across a wide range of problems. At the same
time however, it is nontrivial to develop a method that is
truly effective in higher dimensions, and MLPs have found
a useful niche in this arena. Both theoretical and practical
reasons for this will be explored in subsequent sections of
this paper.

Historically, MLPs have been plagued by slow learning.
The desire to overcome this sluggishness has resulted in
considerable work on the development of faster learning
algorithms for MLPs. Backpropagation is a first—order
local descent technique, closely resembling the stochastic
gradient method. A majority of the work on faster algo-
rithms has been concentrated on the development of more
advanced first and second-order local descent methods (see
[11] for an overview). These methods use first and/or sec-
ond derivatives to determine directions of search that de-
scend the criterion function as quickly as possible. All of
these derivative—based descent methods possess the follow-
ing characteristics. First their convergence is asymptotic,
which means that it is not possible to bound the number of
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steps in the algorithm. It also makes it difficult to choose
a suitable stopping criterion (i.e. one that is problem inde-
pendent) [12], [13]. Second, these methods typically come
with several user specified parameters that must be “tuned
to the problem” if learning is to proceed at a reasonable
rate (e.g. learning rates, momentum parameter, batch size,
etc..). Finally, the solutions obtained with these methods
depend on the initial conditions (because of local minima).
Thus, to improve the likelihood of finding a good solution
we must train the network from several different starting
points.

The learning algorithm developed in this paper is quite
different from the traditional family of derivative—based
descent methods. First, a constructive approach is used,
which builds the network one node at a time. The ad-
vantages of a constructive approach include computational
efficiency and the ease of determining a suitable network
size. In fact, there is theoretical evidence to suggest that
the learning problem may be intrinsically easier if we are
allowed to add nodes and weights during the learning pro-
cess [14]. Although constructive approaches are not guar-
anteed to produce networks of absolute minimal size, there
is good reason to believe that they can produce representa-
tions which are efficient [15]. Constructive algorithms have
been the mainstay in the statistical community for many
years, and in recent years many of these methods have been
integrated into the neural network community [16], [8], [9],
[17], [18], [7], [19], [20], [21], [22], [23], [24], [25].

Second, we use piecewise linear sigmoidal nodes instead
of continuously differentiable logistic nodes. This changes
the nature of the learning problem entirely. It becomes
a combinatorial problem in the sense that the number of
feasible solutions that we must search through to find a so-
lution is finite. This makes it possible to develop learning
algorithms that converge in a finite number of steps. In
fact we derive polynomial bounds on the number of steps
required for the algorithms that we develop. These algo-
rithms also turn out to be quite easy to use. They have
a simple (automatic) stopping criterion, and very few user
specified parameters. In addition, they can be made to
produce good solutions that are independent of initial con-
ditions.

The remainder of this paper is organized as follows. The
material in section II provides an introduction to the par-
ticular constructive approach used in this paper. Sections
IIT and IV develop new learning algorithms for piecewise
linear sigmoidal nodes, which constitute the primary con-
tribution of this paper. Finally, empirical results are pro-
vided in section V to highlight some of the salient features
of these new algorithms.
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II. FUNCTION APPROXIMATION WITH SIGMOIDAL BASIS
FUNCTIONS

The following notation is used in the development in this
section. The symbol x is used to represent input vectors
x that have been augmented with a 1 in the first position,

that is
(1]

X

Similarly, w is used to represent weight vectors wy that
have been augmented with a “bias” weight in the first po-

sition
~ Wo
W = { Wy j| (2)

The dimension of these augmented vectors is d + 1.

The class of function approximation problems addressed
in this paper can be described as follows. The function
f : x = y defines a continuous nonlinear mapping from
x € R% to y € R whose concise mathematical description
is assumed unknown. Specific information about f is pro-
vided by way of a sample set S = {(x;,y;)}Y,, which con-
tains samples of f at a finite number of points in R?. Using
these samples (and our knowledge of f’s general properties,
e.g. continuity), our goal is to produce an estimate, f, that
approximates f as closely as possible.

The class of approximating functions considered here are
one hidden layer neural networks of the form

fn(x) =bo + Z bigi(x) (3)

where the g;(x) are sigmoidal functions. We work with
different forms of the sigmoid in this paper, all of which
are parameterized by a weight vector w;. This is made
explicit with the notation g;(x) = o(x,w;). The two most
common realizations are the logistic function,

T

ol(x, W) = (1+e ¥ %)~ (4)

parameterized by the weight vector w = w and the ramp
function,

0 wde <«
or(xX,w) = (ng —a)/(f—-a) a< ng <pg (5
1 wlix >

parameterized by w!' = [a, 3, w]]. The ramp function can
be interpreted as a piecewise linear approximation to the
logistic function.

The models in (3), with sigmoidal basis functions, have
been shown to be universal approximators over a compact
subset S of R for the class of continuous functions f from
S to R [26], [27]. These models have the familiar “lin-
ear combination of basis functions” form. It is well-known
that when the basis functions are fixed, this form suffers
from the curse of dimensionality. For example a typical
bound on approximation error for fixed basis functions is
O(1/n!/4) [28], [29], indicating that it may require a num-
ber of basis functions that is exponential in d to achieve a

Initialization:
fo(x) =0
for n=1 to nmez do

1. Compute Residual: e, (x) = f(x) — fn—1(x)

2. Fit Residual: gn(x) = argmingeq ||len(x) — g(x)|

3. Update Estimate: fn(x) = afp—1(x) + Bgn(x)

where a and 3 are chosen to minimize || f(x) — fn(x)]|

endloop

Fig. 1. Tterative Approximation Algorithm (ITA).

significant reduction in error. When the basis functions are
“tunable”, however, it is possible (in principle) to circum-
vent the curse of dimensionality (or at least this aspect
of it). For example, with a sigmoidal basis it has been
shown that under very general conditions, the approxima-
tion error is bounded by O(1/n) [28]. The missing 1/d
in the power of the denominator is a strong motivation for
the use of these basis functions in higher dimensional prob-
lems. In addition, Jones has shown that this O(1/n) bound
can be achieved constructively [15]. This result is also pre-
sented in [28], [30], where it receives a slightly different
treatment. The proof of this result is itself constructive,
and thus provides a framework for the development of an
algorithm which can (in principle) achieve this bound.

One manifestation of this algorithm is shown in Figure
1. It starts by fitting the first basis to the original function
(the first time through the loop e; = f and fi = g1). The
second basis is then fit to the residual from the first ap-
proximation, and the two are combined (in Step 3) to form
the second approximation. This process of fitting a basis
to the current residual and then combining it with the pre-
vious approximation continues until a suitable size model
is found. This is called the iterative approximation algo-
rithm because it builds the approximation by iterating on
the residual (i.e. the unexplained portion of the function)
at each step.

This algorithm is attractive in that the main loop con-
tains only three steps, two of which are quite simple. The
middle step however, can be quite difficult. This step re-
quires that we find the function g,, that best fits the current
residual. This problem generally does not have a closed
form solution, and even algorithmic solutions are not guar-
anteed to produce the optimal g, in an efficient manner. In
this paper we develop algorithms for performing this step
that produce “good approximations” (i.e. near optimal) in
a computationally efficient manner.

Note that when sigmoidal functions are used in Step 2
of the ITA algorithm, they must be scaled and shifted so
that they can better fit functions with arbitrary range and
position. That is, the sigmoidal basis used in Step 2 of the
ITA takes on the form

9(x) = ao + ar0(x, w) (6)

where a; and ag are scaling and shifting parameters. The
final model produced by the ITA algorithm can still be ex-
pressed in the form of equation (3), where the the b; co-
efficients are simple deterministic functions of «,3, ag and
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for i=1 to n do "
1. Compute fp—_1: fn—1(x) = Ej# a;g;j(x)
. Compute Residual: en—1(x) = f(x) — fn—1(x)
. Fit Residual: g;(x) = argmingeq [|len—1(x) — g(x)||
. Update Estimate: fn(x) = E;.;l a;g;j(x)
where {a;} are chosen to minimize || f(x) — fn (x)||
endloop

= W N

Fig. 2. Refitting Algorithm.

aj.

In practice it is common to use a refitting procedure to
“fine tune” the result of ITA. This procedure can compen-
sate somewhat for the suboptimal result that may be pro-
duced at Step 2, and also to some degree for limitations
due to the constructive nature of ITA. A typical refitting
procedure is shown in Figure 2. The basic idea is to refit
each basis function, one at a time, to the residual formed
from the approximation using the other n — 1 basis func-
tions. This algorithm has the same attributes as the ITA:
it optimizes individual basis functions by fitting them to
a residual, and then reintegrates them into the overall fit.
It differs from the ITA in that the residual is computed
differently, and that the starting point for each refitting is
usually close to its final point. This means that the search
in Step 3 is generally very fast compared to its counterpart
in Step 2 of the ITA. Because of this, refitting usually runs
much faster than ITA.

III. LEARNING WITH RAMPS AND HINGING SIGMOIDS

This section develops learning algorithms for piecewise
linear sigmoidal nodes. These algorithms can be used to
optimize the basis in Step 2 of the ITA (and Step 3 of
the refitting algorithm). We begin by defining a revised
version of the ramp function called the hinging sigmoid
(HS) function on which our algorithms are based. A HS
node performs the function

W4, ‘X’ZT)E 2 w4
on(x,w) =< Wix, w_ <wl/x<wy (7)
w—, w; x <w_
where
Wy
w=| wy (8)

This function is identical to the ramp basis defined in (5)
and (6), but is parameterized differently. An example of the
surface formed by an HS node on a two—dimensional input
is shown in Figure 3. It is comprised of three hyperplanes
joined pairwise continuously at two hinge locations. The
upper and middle hyperplanes are joined at “Hinge 1”7 and
the lower and middle hyperplanes are joined at “Hinge 2”.
These hinges induce linear partitions on the input space
that divide the space into three regions, and the samples

Fig. 3. A Sigmoid Hinge function in two dimensions.

in S into three subsets,

St = {(xi, i) : W[ % > wy }
St ={(xi,yi) rw_ < W% <wy} 9)
S ={(xiyi) : W% <w_}

These subsets, and the corresponding regions of the input
space, are referred to as the PLUS, LINEAR and MINUS
subsets/regions respectively. We refer to this type of par-
tition as a sigmoidal partition. A sigmoidal partition of S
will be denoted P = {S4,S;,S_}, and the set of all such
partitions will be denoted IT = {P;}.

Input samples which fall on the boundary between two
regions can be assigned to the set on either side. These
points are referred to as hinge samples and play a crucial
role in subsequent development.

Note that once a weight vector w in (8) is specified, the
partition P is completely determined, but the reverse is
not necessarily true. That is, there are generally an infinite
number of weight vectors that induce the same partition.

We begin our quest for a learning algorithm with the
development of an expression for the empirical risk. The
empirical risk (squared error over the sample set) is defined

Ep(w) = 5 Z (Yi — on(xi, W)’ (10)

S

This expression can be expanded into three terms, one for
each set in the partition,

T

Bp(w) = 3 S -w )y Sl 43 S i)
S_

S+ Sl

After further expansion and rearrangement of terms we
obtain

EP(W) = % (N_w2_ + N+w3_ + ‘X/?‘RZVNVZ)
—w_s, — w+s; — v~vlTrl + 532/

where

R, =Yg XiX] 1= g Xili (11)



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1998 4

Szz%zsyz SJZEerZ/i Sy_zzs,yi

and Ny, N; and N_ are the number of samples in S, S;
and S_ respectively. This expression can be simplified to

(12)

1

Ep(w) = 2WTRW —wlr+ sz (13)
where
R, 0 0 ] Wy
R = 0 Ny O r= s;r w=| wy
0 0 N_ Sy w_
(14)

The subscript P is used to emphasize that this criterion is
dependent on the partition (i.e. P is required to form R
and r). In fact, the nature of the partition plays a critical
role in determining the properties of the solution. More
specifically it determines the rank of R. Note that R is a
symmetric matrix and in general is positive semidefinite.
When R is positive definite (i.e. full rank), P is referred
to as a stable partition, and when R has reduced rank P is
referred to as an unstable partition. A stable partition re-
quires that there be at least one sample in S; and S_, and
that the samples in S; form a positive definite correlation
matrix R;. The conditions on S; and S_ are quite reason-
able, given that an empty set in either case would mean
that the corresponding region of the sigmoid could take on
an arbitrary value without affecting the empirical error. A
necessary (but not sufficient) condition for R; > 0 is that
there be at least d + 1 samples in S;. ' For purposes of
algorithm development we require that |\S;| > Nyin, where
Npnin is a suitably chosen value greater than or equal to
d+ 1. With the proper choice of N,,;, we can often insure
that R; is not only positive definite, but also well-behaved.

Alternatively, we could consider adding a regularization
term to Ep(w) of the form A||w||? (e.g. weight decay). The
corresponding empirical risk would have the same form as
(13) with R replaced by Ry = R + AL. Note that choos-
ing A > 0 guarantees Ry > 0. In this case all partitions
are stable and there is no need to monitor the number of
samples in S_, S; and Sy. On the other hand, adding the
regularization term leads to a biased solution. The bias can
be minimized however, by making \ sufficiently small. 2

In summary, when seeking a minimizing solution for
Ep(w) we restrict ourselves to stable partitions because
of the potential nonuniqueness associated with solutions
to unstable partitions. If we use a regularization term (i.e.
A > 0), then stable partitions are guaranteed. On the other
hand, in practice we can often circumvent the need for reg-
ularization by simply requiring that |S;| > 1, |S_| > 1 and
|Sl| > Nimin-

Note that Ep(w) is quadratic in w, and with Ry > 0
a unique global minimum is guaranteed. Thus, it would

n truth, the positive definite condition on R; is not critical to our
implementation, and can be removed if we are willing to employ tech-
niques for manipulating reduced rank matrices. In fact we are often
forced to employ such techniques in practice to handle ill-conditioned
matrices that arise.

2 Alternatively, in practice it is customary to choose A to optimize
the bias/variance trade—off.

seem that the value of w that minimizes Ep(w) could be
readily obtained by solving the system of linear equations
R,w = r. However, the solution to Ryw = r does not
necessarily minimize Ep(w) because the resulting w may
induce a different partition on S which changes the expres-
sion for Ep(w). Determining a weight vector that simulta-
neously minimizes Ep(w) and preserves the current parti-
tion can be posed as a constrained optimization problem.
This problem takes on the form

min %WTR)\W —wTlr (15)
subject to Aw < 0
where the inequality constraints are designed to maintain
the current partition. Using the partition equations in (9)
we obtain the following form for A.

Ay
| A
A= A (16)
A_
where the rows of A, ,A;1,A;_ and A_ are
ai =( -x 1 0 ), x; €8+
T =T <
a; = ( X; -1 0 ), X; €5
ai = ( —)~(ZT 0 1 ), X; €5 (17)
al =( %' 0 -1 ), %€8_

Note that there are two constraints associated with each
sample in S; so that A has a total of Ny + 2N; + N_
rows. The optimization problem in (15) is a Quadratic
Programming problem with inequality constraints, and be-
cause R > 0 it has a unique global minimum. The general
Quadratic Programming problem is N P-hard [31] and also
hard to approximate [32]. However, the convex case which
we restrict ourselves to here (i.e. Ry > 0) admits a polyno-
mial time solution [33]. In this paper we use the active set
algorithm described in [13] to solve (15). This algorithm is
similar to the Simplex algorithm for Linear Programming
in that it is simple, robust, and guaranteed to converge in a
finite number of steps. It also tends to run very efficiently
in practice. With the proper implementation, this algo-
rithm runs in O(k(d*> + Nd)) time, where k is the number
of times through the main loop. Although k can grow quite
large in theory, in practice it is typically on the order of d
or less.

The solution to the quadratic programming problem in
(15) is only as good as the current partition allows. The
more challenging aspect of minimizing Ep(w) is in the
search for a good partition. Unfortunately there is no sim-
ple arrangement of partitions that corresponds to a partial
ordering in Ep(w), so the search for the optimal parti-
tion will be a computationally challenging problem. An
exhaustive search is usually out of the question because of
the prohibitively large number of partitions, as given by
the following lemma.

Lemma 1: Let S contain a total of N samples in ¢ that
lie in general position (i.e. no d + 1 of the samples lie
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on a d — 1 dimensional hyperplane). Then the number of
sigmoidal partitions defined in (9) is @(Nt!).

Proof:  Let L(N,d) represent the number of lin-
ear dichotomies of N points in d dimensions. When the
N points are in general position it is well-known that
L(N,d) = ©(N%) [34]. Each sigmoidal partition is com-
prised of two linear dichotomies, one formed by Hinge 1
and the other by Hinge 2, and these dichotomies are con-
strained to be simple translations of one another. That
is, the separating hyperplanes that induce these two di-
chotomies are constrained to be parallel. Consequently,
when one is given, the other can take on at most N + 1
distinct values. These come from the N + 1 dichotomies
induced as a hyperplane with fixed orientation is swept
from one end of the input data to the other (a new parti-
tion is induced each time it crosses a data sample). Thus,
there are at most O(N?+1) sigmoidal partitions. Now we
show that there are at least this many. Consider an arbi-
trary dichotomy formed by Hinge 1. It splits S into two
sets of size N1 and Ns. Suppose the first set is S and
the second is S; U S_. Because the LINEAR region must
fall between the PLUS and MINUS regions, the “legal”
dichotomies for Hinge 2 can only be obtained by sweeping
through the samples in the second set. This gives Na+1 di-
chotomies (including those leading to unstable partitions).
Similarly, if the second set is labeled S; and the first is
S; U S_ then there will be N7 + 1 possible dichotomies for
Hinge 2. These two cases have one dichotomy in common,
so in total, for each pair of dichotomies induced by Hinge
1 there will be N; + No +1 = N + 1 different dichotomies
for Hinge 2. Thus, there are (N + 1)L(N,d)/2 = Q(N4t+1)
total sigmoidal partitions. |

Even though the number of sigmoidal partitions is poly-
nomial in IV, exhaustive search is clearly out of the question
for even modest values of N and d. Lacking a global search
strategy which is provably more efficient we are forced to
consider heuristic methods for searching I1. Two such algo-
rithms are described below. The first was introduced else-
where and is called the Ramps algorithm. Ramps searches
through partitions using a strategy analogous that used by
the K—Means clustering algorithm. The second is a new
method introduced here which searches through partitions
by allowing a small number of carefully chosen points to
migrate from one set to another at each step. These points
are chosen so that the fit can be improved on each succes-
sive partition.

The Ramps algorithm presented here is due to Friedman
and Breiman [35]. The advantage of this algorithm lies
in its simplicity. It searches through partitions by repeat-
edly solving Rw = r until it converges to a point where
w induces the same partition on two consecutive iterations
(note that A = 0 for this algorithm). The complete algo-
rithm, as presented in [35], is shown in Figure 4, where the
ramp basis notation in (5) and (6) has been used. This al-
gorithm has the advantage that, when it converges, conver-
gence is usually very fast. Unfortunately it does not always
converge. Note that there is no mechanism to prevent the
algorithm from diverging to an unstable partition, and al-

{Invoke routine with feasible solution W = {wgy, a, 3, a0,a1}.}

procedure Ramps (W)
repeat
Compute z and Partition data into S—, S; and S+.
zi = wrxi,i=1,2,..,N.
S_ ={(xi,yi) : 2 < a}
Sy ={(xi,yi) r < 2 < B}
Sy ={(x:i,9:) : B <z}
Compute R, r, f_ and B+.
R= (Es, %;%xT)/N,
r= (ESZ x;y:) /N
B = (X ui)/N-
B+ = (ZS+ yi)/N+
Update wT = (wo wg‘)
w=R"Ir
Update o and (.
o= (B —wo)/|[wall
B =B+ —wo)/llwall
Normalize wg.
wq = wq/||wll
until (wg,a,8 converge) ;
Compute the bias and scale parameters.
ap = (-

a1:,3+7,8_

return(W);

end ; {Ramps}

Fig. 4. The Ramps Algorithm.

though there are relatively few such partitions, divergence
to one of them is commonly observed in practice. This
behavior can be illustrated with a simple one—dimensional
example. Consider the five sample problem in Figure 5.
There are three stable partitions for this problem,

b= {(1,1)},{(2,4),(3,45),(4,5)},{(5,8)}}

P, = {{(17 1)7 (274)}7 {(3745)7 (4v 5)}7 {(57 8)}}
Py ={{(1,1)},{(2,4),(3,4.5)},{(4,5),(5,8)}}

Starting from any one of these three partitions, the Ramps
algorithm will diverge to an unstable partition (with zero
points in Sy and S_) after just one step. In practice the
simplest way to compensate for this behavior is to restart
the algorithm from a different initial partition, and repeat
this process if necessary until convergence to a stable par-
tition is obtained. The Ramps algorithm can also be shown
to exhibit limit cycles (with even periods). In practice we
can compensate for this behavior by placing an upper limit
on the total number of iterations.

The partitions produced by Ramps can vary dramatically
from one iteration to the next (i.e. a large number of sam-
ples can move between subsets). The algorithm considered
next is a more conservative, in that only a few carefully cho-
sen samples are allowed to move between subsets. This ap-
proach employs a Quadratic Programming (QP) algorithm
at each new partition to determine the optimal weight vec-
tor for that partition (i.e. the optimal orientation for the
separating hyperplanes). Transitions are made from one
partition to the next by allowing hinge samples to flip from
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Fig. 5. Example problem for the Ramps algorithm.

one side of the hinge boundary to the next. The search is
terminated when a minimum value of Ep(w) is found (i.e.
it can no longer be reduced by flipping hinge samples). The
motivation for this algorithm originates from the following
observations regarding the types of solutions produced by
the QP algorithm. The QP solution for an individual par-
tition can take on two different forms.

1. In the first form the solution has no active constraints,
that is none of the rows of A satisfy al w = 0. This means
that there are no hinge samples associated with this solu-
tion. Consequently this solution is a local minimum over
I1. This is easily verified, since a small perturbation of w
towards any another partition will increase Ep(w).

2. In the second form the QP solution has one or more ac-
tive constraints, i.e. one or more hinge samples. In this
case it may be possible to reduce Ep(w) further by per-
turbing w in a direction that violates one of the active con-
straints. To make such a perturbation legal we can simply
flip the sign of the constraint (multiply by -1). Note that
it is always possible to flip the sign of an active constraint
and maintain feasibility of the current solution (if alw = 0
then —a”w = 0). Flipping the sign of a constraint is equiv-
alent to moving a hinge sample across the hinge boundary
from one set to another (e.g. from S; to Sy ). This results
in a new partition of the data. Computationally this in-
volves a relabeling of the data sample, flipping the sign of
the constraint, and updating Ry and r. After the flip, a
new QP solution is sought. If this new solution is differ-
ent from the previous solution then it will have a reduced
value of Ep(w). On the other hand, if it is the same as the
previous solution then it represents a local minimum over
I1. We know this to be true because it is the minimum for
two adjacent partitions which implies that a perturbation
in any direction will increase Ep(w).

It is relatively straightforward to synthesize an algorithm
for descending Ep(w) that capitalizes on these properties
of the QP solution. For example, the algorithm in Figure
6 moves from one partition to the next (and from one QP
solution to the next) by successively flipping hinge sam-
ples across the hinge boundaries as described above un-
til it reaches a local minimum over II. We call this the
HingeDescent algorithm because it allows the hinges to

{Invoke with feasible solution W = {w,Ry,r,A,S4+,S;,S_}.}

procedure HingeDescent (V)
{ Walk hinges across data until a min partition is found.}
E = %WTR)\W —wTlr
do
Epin = E

{Flip Hinge 1 Samples.}
for each ((x;,y;) on Hinge 1) do
if ((x4,yi) € S+ and Ny > 1) then
Move (x;,y;) from St to S;
Update Ry, r, and A
elseif ((x;,y;) € S; and N; > Np,in) then
Move (x;,y;) from S; to S+
Update Ry, r, and A
endif
endloop

{Flip Hinge 2 Samples.}
for each ((x;,y;) on Hinge 2) do
if ((x4,y;) € S— and N_ > 1) then
Move (x;,y;) from S_ to S;
Update Ry, r, and A
elseif ((x;,y;) € S; and N; > N,,;,) then
Move (x;,y;) from S; to S—
Update Ry, r, and A
endif
endloop

{ Compute optimal solution for new partition.}
W = QPSolve(W);

E = %WTR/\W —w'lr

while (E < Epin) ;

return(W);
end ; {HingeDescent}
Fig. 6. The HingeDescent Algorithm. When A > 0 the tests for

N_ >1, Ny > 1 and N; > N, can be omitted.

“walk across” the data in a manner that descends the
Ep(w) criterion. Note that provisions are made within the
algorithm to avoid unstable partitions in the event that
A = 0. Note also that it is easy to modify this algorithm
to descend only one hinge at a time, simply by omitting
one of the blocks of code that flips samples across the cor-
responding hinge boundary.

Lemma 2: With A > 0 the HingeDescent algorithm will
converge to a stable partition of Ep(w) in a finite number
of steps.

Proof:  First note that A > 0 guarantees Ry > 0,
so that a QP solution for any partition can be found in a
finite number of steps. For example, it is relatively easy to
show that the active set algorithm satisfies this condition.
The proof of this result is beyond the scope of this paper,
but can easily be found in the literature [12], [13]. Now,
by design, HingeDescent always moves from one partition
to the next, reducing Ep(w) at each step (except the last
one) so that no partitions are revisited. Since there are a
finite number of partitions (see Lemma 1) this algorithm
must terminate in a finite number of steps. QED. |

Assume that QPSolve runs in O(k(d? + Nd)) time as pre-
viously stated. Then the run time of HingeDescent is given
by O(N,((k + Np)d*> + kNd)), where Nj, is the number of
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Fig. 7. Solution to the 5 sample problem using HingeDescent.

samples flipped at each step and IV, is the total number of
partitions explored. Typical values for k and N, are on the
order of d, simplifying this expression to O(N,(d® + Nd?)).
N, can vary widely, but is often substantially less than V.
In contrast the Ramps algorithm, if properly implemented,
runs in O(N,Npd?), where Nj, is the number of samples
that move between sets on each iteration and N, is the to-
tal number of partitions explored. For Ramps, Ny, is often
much larger than d, so its run time is roughly comparable
to that of HingeDescent.

In contrast however, HingeDescent is capable of pro-
viding solutions which are not possible with Ramps. For
example, consider the problem illustrated earlier in Fig-
ure 5. Ramps is not able to provide a stable solution for
this problem, but HingeDescent finds the optimal solution
(shown in Figure 7) from any valid starting point.

Both Ramps and HingeDescent seek a local minimum
over II, and both can produce poor solutions depending on
their starting partition. One way to remedy this is to start
them from several different initial partitions, and then re-
tain the best solution overall. We take a different approach
in the next section where we present an algorithm that al-
ways starts with the same initial condition, visits several
local minima along the way, and always ends up with the
same final solution each time. The SweepingHinge algo-
rithm as it is called, builds on the approach adopted in the
HingeDescent algorithm.

IV. THE SWEEPING HINGE ALGORITHM

The SweepingHinge algorithm works as follows. It starts
by performing a linear fit to the data. This fit is used for
the initial linear region of the sigmoid. The initial hinges
are then placed at the two extreme samples on opposite
ends of the linear fit. This puts one sample in the PLUS
region and one in the MINUS region, leaving N —2 samples
in the LINEAR region. The details of InitialLinearFit,
including the initialization of all relevant algorithm param-
eters, are shown in Figure 8. Note that this initialization
is analogous to the use of small weights in the initialization
of the backpropagation algorithm, since small weights tend
to place data in the linear region of the sigmoid.

After the initial linear fit, the hinges are allowed to de-

{Returns initial feasible solution W = {w,R,r, A, S, S;,S_}.}

procedure InitialLinearFit (S)
{ Compute Least Squares Fit to data.}

_ NN a7
Rl*Zizlsz‘

{Find the two samples at the extremes.}
for each (x; € S) do
zi = W] %
endloop
j = argmin;{z;}
k = argmax;{z;}

{Position Hinge 1 on the maz sample and put in Sy. }
St ={(xk,ur)}

Ny=1
A={(-x 1 0)}
Wi = 2k

R; = R; — ;%]
r=r — XpYk
Sy = Yk

{Position Hinge 2 on the min sample and put in S_. }
S— = {(xj,u5)}
N_=1

A=AU{(£T 0 1))
wo =z
R; =R, — ijijT
r;=r; — X;y;
Sy =Yj
return(W);
end ; {InitialLinearFit}

Fig. 8. The InitialLinearFit Algorithm.

scend to a local minimum using HingeDescent. This cor-
responds loosely to the solution that would be produced
by backpropagation. The SweepingHinge algorithm con-
tinues to look past this solution for a better one. This is
accomplished by sweeping Hinge 1 across the data one sam-
ple at a time. Mechanically this is achieved by moving one
additional sample from S; to Sy at each step. Hinge 2 is
allowed to descend to an optimal position at each of these
steps using the Hinge2Descent algorithm. This algorithm
is identical to HingeDescent except that the code that flips
samples across Hinge 1 is omitted. The best overall solution
from the sweep is retained and “fine-tuned” with one final
pass through the HingeDescent algorithm to produce the
final solution. The complete algorithm is shown in Figure
9.

All of the partitions explored by the SweepingHinge al-
gorithm are determined in a data driven fashion. At the
same time, the mandatory sweep of Hinge 1 forces this al-
gorithm to explore a rich set of partitions. In fact, this
algorithm tends to pass through basins of attraction for
several local minima during the sweep. In addition, the
forced sweep guarantees that the algorithm will terminate
in finite time. If the number of data samples is large, the
sweep time can be reduced by moving M samples into Sy
at each step (instead of 1). In fact, when N is large com-
pared to d, there is often little difference between solutions
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{ This routine returns a solution W* = {w,R,r, A, 5,,S;,S_}.}

procedure SweepingHinge (S)
{Find an Initialize Feasible Solution and
then search for a minimizing partition.}
W = InitiallLinearFit(S);
W = HingeDescent(W);

{Save current solution and compute its criterion.}
W* =W
E* = %WTRW —wTlr

{Sweep Hinge 1 Across the Data.}
while (N < N — Ny, — 1) do

{Find the sample in S; closest to
Hinge 1 and move it to S4.}
for each ((x;,y;) € S;) do
Z2; = V~V1T3~cz
endloop
j = argmin;{z;}
Move (x;,y;) from S; to Sy, and update R,r,A.
Wt = 25

{Maintain a stable partition by moving
a sample from S_ to S; if needed.}
if (N; < Npin) then
for each ((x;,y;) € S—) do
Z2; = V~V1T3~cz
endloop
j = argmax;{z;}
Move (x;,y;) from S_ to S;, and update R,r,A.
wo = 2j
endif

{Optimize Hinge 2 location.}
W = Hinge2Descent(W);

{Keep track of the best solution so far.}
E= %WTRW —wTlr
if (E < E*) then

E*=F
W* =W
endif
endloop

{Fine—tune best solution from the sweep.}
W* = HingeDescent(WW*);
return(WW*);

end ; {SweepingHinge}

Fig. 9. The SweepingHinge Algorithm.

for neighboring partitions and it is possible to sweep across
several samples at each step without adversely affecting the
final solution. Note that this algorithm always starts at the
same position (determined by the data), and as long as M
is fixed this algorithm always produces the same answer.
While there is no guarantee that it will locate the global
minimum over II, there is good reason to believe that it will
provide solutions of high quality. This claim is supported
in part by the empirical results presented in section V.

The run time of SweepingHinge is no worse than N times
that of HingeDescent (it is usually much less). Given this,
the run time for this algorithm is O(N N, (d®>+ Nd?)). Con-
sequently, SweepingHinge scales reasonably well in both NV
and d, considering the nature of the problem it is designed
to solve.

V. EMPIRICAL RESULTS

Three sets of empirical results are presented in this sec-
tion. The first involves a two—dimensional function whose
approximations can be displayed visually and compared
with results in [8], [9], [24]. The second is an experiment
designed to test the effect of dimensionality on the mod-
els produced by the ITA/SweepingHinge algorithm. This
experiment can be viewed as an empirical test of Barron’s
theoretical bound on approximation error. The third ex-
periment involves a comparison with several other nonpara-
metric modeling methods from [36].

All of the results presented in this section used the ITA al-
gorithm to build a one-hidden layer network model. When
SweepingHinge was employed at Step 2 of the algorithm,
A was set to zero and N,,;, was set equal to 3d, where d is
the input dimension. This proved to be sufficient to main-
tain both stable and well-behaved partitions. For compar-
ison, HingeDescent and Ramps were also employed at Step
2. HingeDescent was performed from 10 random initial
hinge locations in each case, and the best result incorpo-
rated into the model. Because of the convergence problems
of Ramps, it was restarted from random hinge locations as
often as necessary to produce 10 stable solutions in each
case, and the best result incorporated into the model. Fi-
nally, a refitting pass (Figure 2) was employed after each
new node was added in the ITA. The refitting algorithm
used HingeDescent (or Ramps) to “re—fit” the residual at
Step 3.

Results of the SweepingHinge algorithm applied to the
two—dimensional function in Figure 10 are shown in Figures
11-13. A total of 200 randomly chosen samples from this
function were used for training, and the fits were produced
with 4, 8 and 12 nodes. These results are comparable to
those obtained using other methods on this same (or sim-
ilar) problem(s) (e.g. see the results in [8], [9], [24]). It
is also instructive to examine the effects of noise. Figures
14-17 show results analogous to those in Figures 10-13,
except that uniform noise with a variance of o2 = 0.025
has been added to the target function 3. These results il-
lustrate a remarkable ability of these models to extract the
underlying deterministic function in the presence of noise.

To provide a quantitative comparison, HingeDescent
and Ramps were also applied to this function. An inde-
pendent test set of 1600 samples was used to measure the
generalization performance. Results for 02 = 0, 0.025
and 0.1 are provided in Tables I, II and III. The re-
sults for HingeDescent and Ramps are averaged over 10
trials and the standard deviation is shown in parentheses.
(SweepingHinge always provides the same result by de-
sign).

Note first that the performances of SweepingHinge and
HingeDescent are consistently better than those of Ramps.
One might expect HingeDescent and Ramps to produce
similar results, since both descend to a local minimum from
random starting points. The difference however is that
HingeDescent is guaranteed to converge from any (stable)

3Note that the total energy in the noise—free target function is 0.5.
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...
N =

Fig. 10. Original Function. Fig. 13. Fit with 12 nodes.

Fig. 11. Fit with 4 Nodes. Fig. 14. Original function with noise.

Fig. 12. Fit with 8 nodes. Fig. 15. Fit to noisy function with 4 nodes.
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Fig. 16. Fit to noisy function with 8 nodes.

O
of XX
os S

Fig. 17. Fit to noisy function with 12 nodes.

starting position, while Ramps is not. In fact, the Ramps al-
gorithm diverges from a majority of its starting positions.
This is illustrated in Tables IV, V and VI which show the
number of initial positions required to reach 10 stable so-
lutions. The ratio of total starting positions to successful
starting positions varies roughly from 7:1 to 15:1. The re-
sults are generally worse as the number of nodes increases,
suggesting that the percentage of partitions leading to a
stable solution decreases as the dominant structure in the
function is removed from the residual. The results are also
slightly better as the noise level is increased, which may
be due to the increase in spurious local minima (additional
attractors) that can sometimes accompany high noise sit-
uations. The fact that there is such a high percentage of
unsuccessful starting positions not only slows the Ramps al-
gorithm (because of the large number of restarts required),
but degrades performance by making it harder to discover
the best minima.

The results for SweepingHinge and HingeDescent are
more comparable. On average, HingeDescent provides
better performance in the no noise case, and in the be-
ginning when very few nodes are present. But as the num-
ber of nodes is increased the performance of the two are
roughly equivalent. This is especially true when noise is

10
Number | MSE for | Avg (Std) Avg (Std)
Data of Sweeping | MSE for MSE for
Set Nodes Hinge Hinge Descent RAMPS
4 0.034 0.029 (0.0070) 0.038 (0.0041)
Train 8 0.0045 | 0.0013 (0.00023) | 0.011 (0.0077)
12 0.00086 | 0.00074 (0.00013) | 0.0047 (0.0030)
4 0.045 0.041 (0.011) 0.050 (0.0055)
Test 8 0.0060 | 0.0024 (0.00039) | 0.016 (0.011)
12 0.0019 | 0.0017 (0.00026) | 0.0081 (0.0058)
TABLE 1

MEAN-SQUARED ERROR (MSE) COMPARISONS WITH 02 = 0.

Number | MSE for | Avg (Std) Avg (Std)

Data of Sweeping | MSE for MSE for

Set Nodes Hinge Hinge Descent | RAMPS
4 0.093 0.049 (0.0067) | 0.066 (0.010)
Train 8 0.024 | 0.024 (0.0017) | 0.041 (0.011)
12 0.020 0.021 (0.00081) | 0.031 (0.0049
4 0.095 0.061 (0.0079) | 0.078 (0.0070
Test 8 0.038 0.035 (0.0024) | 0.053 (0.0089
12 0.037 0.035 (0.0022) | 0.046 (0.0050

TABLE II

MEAN-SQUARED ERROR (MSE) COMPARISONS WITH 02 = 0.025.

present. The advantage of SweepingHinge is that it is run
only once. Its solution is not a function of the initial posi-
tion as it is with HingeDescent. Because of the sweeping
operation, SweepingHinge will always take longer than a
single run of HingeDescent. But when HingeDescent is
started from several initial positions the run times of the
two algorithms are more comparable.

The second experiment in this section is designed to test
the effect of dimensionality on the models produced by
ITA /SweepingHinge. In section II we saw that under ap-
propriate conditions the approximation error for sigmoidal
basis function models is bounded by c¢;/n, where ¢y de-
pends on f. It is trivial to show that this bound also ap-
plies to the empirical squared error. That is, when f, n is

Number | MSE for | Avg (Std) Avg (Std)

Data of Sweeping | MSE for MSE for

Set Nodes Hinge Hinge Descent | RAMPS
4 0.137 0.125 (0.0083) | 0.156 (0.014)
Train 8 0.090 0.095 (0.0036) | 0.119 (0.010)
12 0.083 0.081 (0.0042) | 0.104 (0.011)
4 0.160 0.151 (0.0075) | 0.170 (0.010)
Test 8 0.127 0.131 (0.0050) | 0.144 (0.010)
12 0.130 0.136 (0.0082) | 0.143 (0.010)

TABLE III

MEAN—SQUARED ERROR (MSE) COMPARISONS WITH 02 = 0.1.
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Number Average Standard
of Nodes | Number of Retries | Deviation
4 87 70.5
8 127 97.7
12 155 109.3
TABLE IV
RETRIES NEEDED TO FIND 10 STABLE SOLUTIONS WITH RAMPS
(07, =0).
Number Average Standard
of Nodes | Number of Retries | Deviation
4 85.4 63.3
8 115.4 74.6
12 128.3 73.9
TABLE V
RETRIES NEEDED TO FIND 10 STABLE SOLUTIONS WITH RAMPS
(02 =0.025).
Number Average Standard
of Nodes | Number of Retries | Deviation
4 71.5 45.3
8 87.0 46.2
12 100.0 514
TABLE VI
RETRIES NEEDED TO FIND 10 STABLE SOLUTIONS WITH RAMPS
(62 =0.1).

chosen to minimize the empirical squared error it can be
shown that [28]

_ 1

@ = LS () fanlx)? < 2

i=1

(18)

Although we cannot guarantee a global minimum with the
ITA /SweepingHinge algorithm, we will demonstrate that
it is capable of producing results that satisfy (18).

The bound in (18) applies only to the error over the
training data. The error over future data, i.e. the general-
ization error, includes both approximation error and esti-
mation error (i.e. the error due to finite sample training).
The estimation error generally prevents us from achieving
(18) over an independent set of test data. This is demon-
strated in the experiment below. Most importantly how-
ever, we demonstrate that both training and test errors
are independent of dimension, giving empirical support for
the claim that ITA /SweepingHinge algorithm can produce
models that circumvent the curse of dimensionality.

The following experiment was adapted from [9]. The
function f(x) = e II” is sampled at 100d points {xi} such
that ||x|| < 3 and ||x|| is uniform on [0,3]. The dimension
d is varied from 4 to 10 (in steps of 2) and models of size
1 to 20 nodes are trained using the ITA/SweepingHinge
algorithm. The number of samples traversed at each step

500

0 2 4 6 8 10 12 14 16 18 20
Number of Nodes

Fig. 19. Results for test data with d = 4,6, 8,10.

of the sweep in SweepingHinge was set to M = 10. The
average sum of squared error, €2, was computed for both
the training data and an independent set of test data of
size 200d. Plots of 1/e? versus the number of nodes are
shown in Figures 18 and 19 for the training and test data
respectively. The curves in Figure 18 are clearly bounded
below by a linear function of n (as suggested by inverting
(18)). More importantly however, they show no significant
dependence on the dimension d. The curves for the test
data in Figure 19 (shown on the same scale) make it clear
that the generalization error is larger than the training er-
ror (as expected). The asymptotic effect of the estimation
error is noticeable in these curves as they start to “bend
over” around n = 10 nodes. Again however, they show no
real dependence on the dimension d.

The final experiment in this section compares the meth-
ods developed here with the results in [36], which exam-
ines several different nonparametric models on a variety
of regression problems. The models in [36] include k-
nearest neighbor (KNN), generalized memory-based learn-
ing (GMBL), projection pursuit regression (PPR), artifi-
cial neural networks (ANN), multivariate adaptive regres-
sion splines (MARS), and constrained topological mapping
(CTM). The ANN model in [36] is a one-hidden layer net-
work that is similar to the model in this paper except that it
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uses the smooth sigmoid activation function and is trained
using a combination of conjugate gradient descent and sim-
ulated annealing. Several regression problems, which vary
from two to six dimensions, are used in [36]. The compar-
ison here is with the “high dimensional” (six dimensional)
function given by

y = 10sin(mz122) + 20(23 — 0.5)% + 1024 + 525 + 0z

This function is sampled uniformly on [—1,1]%. Sets of size
25, 100 and 400 are used for training, and a test set of size
961 is used to measure generalization performance. The
generalization measure is taken to be the normalized root
mean square (NRMS) error, i.e. the standard deviation
of the test set error divided by the standard deviation of
the test set itself. Training sets are synthesized with three
different signal-to—noise ratios (SNRs), oo, 4, and 2. The
noise is Gaussian with zero mean.

Both SweepingHinge and Backpropagation are used to
produce models for this function. Backpropagation is
trained for 1000 epochs with a learning rate of 0.001 (higher
values lead to instabilities and/or excessive oscillations near
the solution). In all cases the number of nodes is optimized
to provide the best generalization performance.

The results are summarized in Table VII.  Both
SweepingHinge and Backpropagation provide inferior
generalization performance in the small sample case. This
is consistent with the ANN results in [36]. Also, in the
noise—free case PPR is the most consistent at providing
the best generalization [36], and is consistently better than
both SweepingHinge and Backpropagation here. How-
ever, SweepingHinge performs very well in the medium and
large sample cases when noise was present, and in fact gen-
eralizes better than all other methods in three of the four
cases. Backpropagation does not produce superior results
for any of the six trails, but outperforms SweepingHinge
in the 400-sample noise—free case. Finally note that
SweepingHinge tends to produce smaller models than
Backpropagation. These results suggest that piecewise—
linear sigmoidal networks trained with ITA /SweepingHinge
are very competitive with other methods.

VI. SUMMARY

This paper has introduced a constructive algorithm for
nonlinear function approximation that builds a 1-hidden
layer neural network with piecewise linear sigmoidal nodes.
Important properties of the algorithm include computa-
tional efficiency, guaranteed convergence in a finite num-
ber of steps, ease of use, solutions which are independent
of initial conditions, a simple stopping criterion, good scal-
ing properties and good fits on high dimensional data.
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12
Number Best MLP with
of SNR | NRMS | SweepingHinge Backprop

Samples from [36] | NRMS (Nodes) | NRMS (Nodes)
25 00 0.496 0.531 (2) 0.555 (4)
25 4 0.546 0.610 (2) 0.683 (4)
25 2 0.677 0.707 (3) 0.724 (3)
100 00 0.099 0.183 (7) 0.240 (10)
100 4 0.319 0.250 (6) 0.345 (13)
100 2 0.456 0.349 (4) 0.551 (13)
400 00 0.039 0.095 (10) 0.086 (11)
400 4 0.152 0.150 (8) 0.166 (8)
400 2 0.269 0.271 (7) 0.337 (8)

TABLE VII

GENERALIZATION RESULTS FOR THE 6—-DIMENSIONAL PROBLEM.
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